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SUMMARY 

The important practical problem of the dispersion of a passive contaminant in a fluid flowing through a pipe or channel 
of uniform cross-section is usually analysed in terms of the distribution of concentration. In this paper however a different 
though approximate approach is adopted which both illustrates the essential statistical nature of the process and may 
be quicker to employ when approximate answers are acceptable in a practical problem. A simple statistical model is 
proposed for the motion of a single molecule of contaminant and leads to an expression for the covariance of the velocity 
of the molecule in terms of the fluid velocity, and hence to a value of Taylor's longitudinal diffusivity. The model is 
applied to two simple flows in a channel, one of which illustrates the effect of the viscous sub-layer. Despite the number 
of simplifying assumptions made in constructing the model it gives results which are close to those obtained by con- 
ventional means. Ways in which the model could be adapted to give even better results are discussed. 

I. Introduction 

Consider  fluid in turbulent  flow through  a straight pipe or  channel  of  uni form cross-section 
and suppose that  at some time, say t = 0, some of  the fluid is marked  in such a way that  it is 
dynamical ly  indistinguishable f rom the unmarked  fluid. It  is of great  interest and impor tance  
to know how the cloud of marked  fluid disperses subsequently. Assuming  that  the molecules 
of  marked  fluid move  independently the dispersion can be described in terms of  the statistical 
properties of  the mot ion  of  a single molecule or  in terms of  the distr ibution of  concentra t ion C 
within the c l o u d - -  which contains many molecules. Al though  the two approaches  are consistent 
mos t  work  has used the latter approach  because of the simplicity and accuracy  of  the equat ion 
governing C when Fick 's  Law is assumed to hold. In  this paper  on  the other  hand  a simple 
statistical model  for the mot ion  of  a single molecule of  marked  fluid is p roposed  and it is shown 
that  in the cases considered it gives results very similar to those obta ined f rom an analysis of  the 
equat ion  governing C. Despite the ad hoc nature  of  the model  it has two advantages.  First, it 
illustrates much  more  directly than the usual approach  the essential statistical nature of  the 
dispersion of  marked  fluid (or indeed of  heat  transfer). Second, the quanti tat ive agreement  
between the two approaches  is close enough for there to be g o o d  prospects  of describing real 
dispersion problems accurately and reasonably efficiently with more  sophist icated models. 

The velocity of  a marked fluid molecule is a r a n d o m  function of  time and its longitudinal 
componen t  has a mean  equal to the discharge velocity once the molecule has forgotten where 
it started f rom [1].  Th roughou t  this paper  axes will be taken moving  with the discharge velocity, 
so that  if X (t) is the longitudinal displacement of  a marked  fluid molecule then X (t) is a r a n d o m  
function of  time with zero ensemble mean. Fur ther  [2] ,  denot ing  an ensemble mean  by an 
overbar,  

d-~Z 2 R(~)& (1.1) 
dt o 

where R(z) is the covariance of  the longitudinal  velocities of  the marked  fluid molecule at two 
times separated by an interval ~, i.e. 
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From Eqn. (1.1) it follows [2] that provided R(z) tends to zero fast enough as z ~  oo then for 
large t, 

X z ~ 2Ot, D = R(z)dz .  (1.3) 
0 

The first of Eqns. (1.3) can also be obtained from an analysis of the equation governing C 
[3, 4] but now D is given by an integral involving the Eulerian velocity distribution and the 
lateral eddy diffusivity assuming that the lateral transfer of marked fluid can be described to 
good approximation by Fick's Law. For  two-dimensional flow in a channel bounded by y = 0 
and y = h this integral is [5] : 

, l/iu,, jl 2 
D = ~ o~(Y) dy,  (1.4) 

where u(y) and ~:(y) are the mean longitudinal turbulent velocity and lateral eddy diffusivity 
respectively. 

The statistical model to be investigated in the present paper will be applied to flows taking 
place in the channel shown in Fig. 1. There are two layers of heights ha and hz in which the 
lateral (i.e. in the direction of the y-axis in Fig. 1) eddy diffusivities have the constant values ~c 1 
and Kz respectively. This geometry was chosen because of its simplicity and also, and mainly, 
because of the availability of results obtained by an analysis of the equation governing C [6], 
so enabling comparisons to be made. This model was chosen in 1-6] because it illustrates quali- 
tatively the role of the viscous sub-layer in longitudinal dispersion. 

\ \ \ \ \ \ \ \ \  

FLOW. ..,= 

i 
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W 

\ \ \ \ \ \ \  

h2 

hi 

Figure 1. The geometry of the flows analysed in this paper. 

2. The structure of the statistical model 

In the flow shown in Fig. 1 a marked fluid molecule wanders between y = 0 and y = h. The mole- 
cule is said to be in state i when it is in the layer of height hi. An event of type i occurs whenever 
the molecule arrives at the interface from state i. 

Now the time between any two consecutive events is a random variable with a probability 
density function f~(t) where the index i refers to the state the molecule is in between the two 
events. Notice particularly that f~(t) is assumed not to depend on the type of the first event. 
This is equivalent to the assumption that the molecule loses its memory at the interface 
which seems very reasonable unless the cloud has dimensions of the order of the mean free 
path of the molecule. The form off,(t) is not known but it can depend only on tc i, hi and t. 
For  simplicity f~ is here assumed to be exponential so that 
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fi(t) = (1/ti) exp ( -  t/ti) (i = 1, 2). (2.1) 

Here ti is the mean time between the two events. By dimensional arguments 

tl = 7h2/~ci (i = 1, 2), (2.2) 

where 7 is a number expected to be of order one. This choice for fi implies that the probability 
of an event of type i occurring between t and t+ 6t is 6t/t~ independent of when the last event 
took place provided only that the molecule is in state i at time t. 

At an event the molecule either returns to the state from which it came or crosses to the other 
state. Define 0(u by 

( a t  an event of type/ the 1 (2.3) 
au = Pr \ molecule crosses to state j / '  

Since molecules do not accumulate at the interface 

0(11+0(12=1, 0(21+0(22=1 . 

Now define pu(t) by 

/" molecule in state 
p o ( t ) = v r ~ j a t t i m e  t I event ~ type ) 

i a t t i m e 0  J "  

By a slight generalization of results in [7], section 9.3, 

P l l ( t ) -  0(21tl + (0(11 
0(21 t I -[- 0(12 t2 \ 

P 2 1 ( t ) -  0(21tl ~- (0(21 
0(21tl -~- 0(12 t2 \ 

P12(t) ~ 0(12t2 -~- (0(12 
0(21tl q- 0(12t2 

p22(t)-  0(,2t2 + (0(22 
0(21 tl-~- 0(12t2 \ 

where 

v =  (0(12 + 0(2 ) 
\ tl t2 J 

Thus as t ~  0% 

Pl l  ~__~ Pl = 0(21tl ' 
P21 0(21 tl  + 0(12 t2 

0(21tl ) e - V t  
0(21tl +0(12t2 

(~21tl ) e - V t  
0(21 tl  + 0(12t2 

' 0(12t2 ~ e vt 
0(2 l t l  + 0(12t2 J 

0(12/2 ~ e -vt 
/ 0(21 t l  q- 0(12t2 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

P12 [_+ P2 -- 0(12t2 (2.8) 
P22 / 0(21t1-Jr-0(lZt2 ' 

so that eventually the probability of the molecule being in a particular state is independent of 
what happened at t--0, that is the molecule forgets where it started from. 

Thus as t - ,  oo all molecules are equivalent so that the probability of a single marked molecule 
being in a particular state i is by mass conservation proportional to hi. Hence 

Pl = hi~h, p2=h2/h.  (2.9) 

The assumption made above that the molecule loses its memory at the interface implies that 
0(ij does not depend on i. From Eqns. (2.4), (2.8) and (2.9) it follows that 

ha ~c2 ; = -- h2/r . (2.10) 
0(12 = 1-0( l t  = h 2 K l + h l K  2 0(21 1-0(22  h 2 K l + h l K  2 

From Eqns. (2.6) and (2.10) the following simplified expressions are obtained: 

hi (ha2~q-h~C2)e_~, h2 (h2 ~c2- h2~c2) 
p l l=pz l  = ~ + h(h2~q+hl~c2 ) P22=P12 = ~ + h(hz~q +hl~ca ) e-~, (2.11) 
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It is necessary to introduce one more definition. This is of Pi~(z) where 

(molecule in state i at time t) 
Pu(z) = Pr \ a n d  in statej  at time t + z  . ' (2.12) 

and in the notation it has been assumed that t is large enough for the molecule to have forgotten 
where it started from so that P~a does not depend on t. Under these circumstances 

(molecule in state) (molecule in state I molecule in state ) 
Pii = Pr \ i  at time t Pr kJ at time t + z i at time t ' 

(molecule in state { molecule in s tate)  
= pi Pr \ j  at time z i at time 0 _ ' 

ip ( vent of type  occur at where0<  <;) 
= p~ r and that the molecule is in state j at time 

l/no event occurs between times~] 
+ Pr ~0 and ~ and that i - - j  / J  ' 

! ! t =p,  )dr , 
v 

where 3ij is 1 if i= j  and zero otherwise, and summation convention is not used. Using Eqns. 
(2.1) and (2.11) gives 

( h l h 2 )  [ 1 - e  -v*] (2.13) P12('c)=P21("c) = \  h 2 / 

/ h :  
P22(z) = ~ - )  + ~ / - ~ - )  e - ~ .  

Suppose now that when the molecule is in state i it has a longitudinal velocity U~ which is a 
stationary random function of time whose statistical properties are known and are independent 
of the lateral motion of the molecule. The mean longitudinal velocity of the molecule is zero 
provided 

Px U1 + P 2  U2 = 0 ,  (2.14) 

and it will be supposed that axes have been chosen so that this is satisfied. Now Eqns. (1.1) and 
(1.2) show that R (,), the covariance of the longitudinal velocities of the marked molecule at two 
times separated by an interval ~, is a quantity of importance for describing the dispersion of 
the cloud. Using the independence of the statistical processes involved, the model introduced 
here gives 

R (~) = Pll (T) U1 (t + $) U 1 (t) ~- PI2 (T) m I (t) m 2 (t -~- T) (2.15) 
+ P2, (~) U, (t + ~) U2 (t) + P22 (~) U2 (t + z) U 2 (t). 

In simplifying Eqn. (2.15) it will be assumed further that the processes U~ and U 2 are independent 
so that 

UI (t-~-T)U2(t)= U,(t)U2(t + T ) = U, U 2 . (2.16) 

Thus, using Eqns. (2.13) and (2.14), 

(hlh2~ 
R(z)=  P11(~)RI(z)+P22(z)Rz(z) + \ h2 ] (Ua-U2)Ze - ~ ,  (2.17) 

where R l(r) and R z(z) are the correlation functions for the processes U 1 and U 2 respectively. 
This result will be applied to two particular flows and it will be noted that the number of 
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assumptions already made is such that the only arbitrariness in the model is the value of the 
constant y defined in Eqn. (2.2). 

3. T w o  appl icat ions  o f  the m o d e l  

The simplest case is the unrealistic one in which U~ = U~ so that R 1 (z) = R 2 ( z )  = 0 and, from Eqn. 
(2.17), 

R(z) = {hlh2~ \ ~ 5 - j  (U1- U2) 2 e -~  �9 (3.1) 

From Eqn. (3.1) the value of the longitudinal diffusivity D, defined in Eqn. (1.3), can be obtained 
by integration with the result that 

(h~h~] (h~ h2) (hxha] ( U t -  U2)2 -'- 7 + (UI-- U2) 2 (3.2) 
D =  \ - ~ - - j  v \ h 3 ) ~ ~ ' 

using Eqns. (2.2), (2.7) and (2.10). On the other hand the value of D can be obtained__ from Eqn. 
(1.4) with ~c(y) = ~c 1 and u(y) = U1 for 0 < y < h~, and ~c(y) = x2 and u(y) = U 2 for hi < y < h2. 
The value obtained is 

D = � 8 9  ~ + ~  (U~-U2) 2. (3.3) 

This is identical with Eqn. (3.2) provided 

-- �89 (3.4) 

A more severe test of the theory occurs when the R~(z) in Eqn. (2.17) are non-zero so that U~ is 
a genuine random function. In [6] the case when u (y) had the form 

u(y) = U (Zy/h- 1) (3.5) 

was analyzed. Here, in applying the statistical model, it is natural to take U~ as the average of 
u(y) with respect to y over the layer of height hi so that 

U~ = - U(hz/h), U2 = U(h~/h), U1- U2 = - U. (3.6) 

Further the values of R i(z) can be obtained directly from Eqn. (4.3) of [6] with the result 

Ri(z) =32U2 f ~ )  2 ~ exp{-(2n-1)zn2xiz/h2} (3.7) 
~ -  . =1 (2n - 1)" 

Substituting (3.6) and (3.7) into Eqn. (2.17) gives 

R(z) = 32U2 w} ~=lexp{-(2n-1)zrcz~:lz/h~} 
T + e- (2n-1)" 

+___~___{(~f  + ( ~ ) 3  (~)e_V~} ~ exp{_(2n_l)Zrt2KEZ/h~} 
,= 1 (2n - 1) 4 

hlh2 U2e -w . (3.8) 
+ h 2 

The value of D can now be obtained by integration using (1.3) with the result 

D - 60h~q 
2 2 

U2h3 [2  ( ~ ) 3 + 6 0 7  ( ~ )  + 1 5 - ( ~ )  ( h i ) F ( ~ J - ~ ) ?  (3.9) 
+ 60-0T~ 
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where 

F ( z ) -  128 ~ 1 1 (3.10) 
g6 ,=1 (2n-  1) 4 (2n-  1) 2 + z z 

It is shown in the Appendix that 
5 1 

Now the value of D can be computed in some special cases. 
(i) ha = 0. In this case there is only one layer present and v h 2 / I r  2 g ~- O, v h ~ / g  21r 2 = oO SO that, 

using the relevant properties of F(z) (see the Appendix), Eqn. (3.9) gives 
U 2 h 2 

D -  30K2 (3.12) 

This agrees exactly with the value obtained by use of Eqn. (1.4) as it should, since with only one 
layer present the value of R (r) reduces to the exact value of R 2 ('c) given by (3.7). 

(ii) ~1 = ~c2 = x and hi ~ h2. As far as the geometry is concerned there is again only one layer 
present, but the derivation of the value of R (r) has assumed that the processes U1 and U2 are 
independent which is clearly wrong since, with one layer, there is only one process not two. 
Thus it can be anticipated that the values of R (z) and hence of D given by the model will be 
less than their true values. Under these conditions 

l ) 
- -  ~ 1, - -  ~ >> 1 ( 3 . 1 3 )  < s , 

and then Eqn. (3.9) give s 

U2h2 I ( ~ 1  ( ~ 1 2 I  D ~ ~ 1 - 6  + O . (3.14) 

As expected this is smaller than the true value which is U2h2/30~c (see Eqn. (3.12)) but only by 
a small quantity proportional to hl/h. 

(iii) hl ~ h2 and h2/~c2 ~ h~/~c 1. This is the case considered in detail in [6] where the layer of 
height hi models the viscous sub-layer in a real channel, and the restrictions above model the 
facts that the viscous sub-layer occupies only a small fraction of the depth of the channel and, 
notwithstanding this, that the time taken for a marked fluid molecule to sample all parts of the 
viscous sub-layer is much longer than that taken for it to sample the remaining parts of the 
channel. With these restrictions, Eqn. (3.9) gives 

U2h 2 [ (30'y(hl/h)3q.-O(hl/h) 4) (1 +O(hl/h))~ 
+ - . ( 3 . 1 5 )  

The value obtained from Eqn. (1.4) with the same restrictions is given in Eqn. (3.8) of [6], and is 

- -  + . ( 3 . 1 6 )  D ~ 30 ~:l 

To highest order in (h~/h) the two expressions are the same provided ? = �89 It is remarkable that 
this was also the value of 7 necessary for agreement in the previous flow considered (see Eqn. 
(3.4)). 

For case (iii) the value of R (~), with the above restrictions, can be obtained approximately 
l?om Eqn. (3.8), with the result 

32U2 [e d-Tr2 K2 r ) re4 (h~) ~ - K } r ~  (3.17) 
R(r) ~ -  xp \ h,C~ 2 ~ + g  exp \ 7h~ ] J "  

~PK 
�9 ,~e value of R (r) obtained in [6] is (see Eqn. (4.2) of that paper) 
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R(z) ~ 32U2[ ~zz~:2z] ~2 7r2Klz~] (3.18) 
rc 4 k exp ( -  ~22 ~ + ~ - ( ~ ) e x p  ( -  4h 2 / j .  

Thus Eqns. (3.17) and (3.18) are not the same (unless g 2  = 8 and ,g2 = 4/? !) but they are very similar. 
Further the second term in Eqn. (3,17) comes from the last term in Eqn. (2.17), which represents 
the contribution to R (z) arising because the mean velocities in the two layers are different, and 
not from the second term which derives from the random 1,,o~1~,,1~ + ; ~  . .  ;*~ ~-ho~.~ S , , h _ l ~ y ~ r ~  ~ ~ ~l,,n~ . . . . . . . . . .  Thi~ 
conclusion agrees with that made in [6]. 

4. Conclusions and suggestions for improving the model 

Despite the number of assumptions made about the statistical model the results in section 3 
show that it is very successful, at least as far as the value of D is concerned, in its predictions, 
provided 7 is chosen as �89 One of the assumptions made is certainly not correct, i.e. that the 
processes U1 and U 2 are statistically independent. Nevertheless the error introduced does not 
appear significant in the cases considered here and it is probable that use of a more realistic 
hypothesis than independence would reduce the errors still further, although the algebra would 
be increased. 

A second assumption in the model is arbitrary rather than incorrect, and that is the nature of 
the probability density functionfi(t) of the time between two events. It would be interesting to 
see how different choices of these functions affected the predictions of the model. 

In analysing other flows and geometries by models of the type considered in this paper it 
would be natural, since u(y) and K(y) do not normally have the simple forms considered here, to 
divide the cross-section of the pipe up into many layers in each of which u(y) and K(y) are 
approximately linear and constant respectively. 
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Appendix 

The purpose of this appendix is to show that F (z) is given by Eqn. (3.11). Write 

1 1 
Xr(z) 

2., (2n-  1) ~ (2n-  1) 2 + z 2 n = l  

Then 

(r=0, 1 . . . .  ). (A.1) 

and 

1 7z 2 
Xo(Z)+Z 2 Z z (z) = ,=1 (2n-1)  2 - 8 ' (A.2) 

1 =4 (A.3) 
~2(Z)@Z2~4(Z) ----- ,=1 ( 2 n - l )  4 - 96 '  

using well-known results. Thus, using Eqn. (3.10), 

128 ~rc4z 2 ~z 2 } 
F(z) = ~ ( 96 8 ~- Zo(Z) . (A.4) 

But, on using partial fractions, 
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:{  1 1 1 
- 2 i z S o ( z  ) = , = 1  i z + ( 2 n - - 1 )  + i z - ( 2 n - - 1 )  

1 + 

,=1 + nrc - - ( n -1 ) r c  
2 

= ~ + 20 02 - -  h 2  71.2 , n=l 
where 

7ziz 7: 
o = -2 -  - ~ .  

But (see [8]),  
1 co 1 

cot 0 = ~ + 20,=~1 02-n2r t2  " 

Thus,  f rom Eqns. (A.5) and (A.6), 

(7 

(A.5) 

(A.6) 

(A.7) 

7~ 7~Z 
= 4ZZ tanh ~ - ,  (A.8) 

using well-known properties of circular and hyperbolic  functions. Thus, substituting in Eqn. 
(A.4), 

F ( z ) =  128{ 7r zcz 7z a n4 } 
~ -  ~ tanh 2 8z 4 + 

= {tanh ( 2 ) - [ ( 2 )  3 ] } / ( 2 )  5 '  ,A.9, 

which is Eqn. (3.11) as required. The following propert ies of  F (z) are used in the paper :  

2 
Izl r 1 =~ F(z)  = ~ + O(z z) ; 

4 ) 2_~_O(z_4) I z { > l ~ F ( : ) =  ~ ~- 

(A.IO) 
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